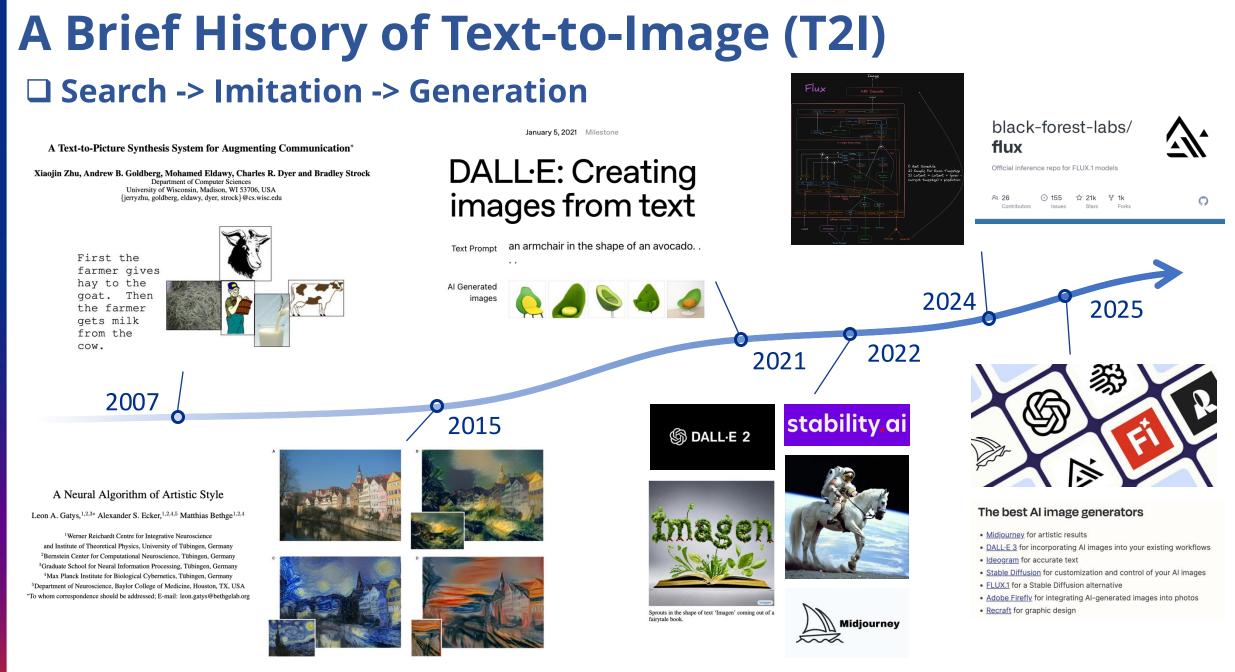


Building Trustworthy Text-to-Image Models: Risks, Defenses, and Forensics

Zhang Jie, Scientist, CFAR, A*STAR zhang_jie@cfar.a-star.edu.sg https://zjzac.github.io/

CREATING GROWTH, ENHANCING LIVES



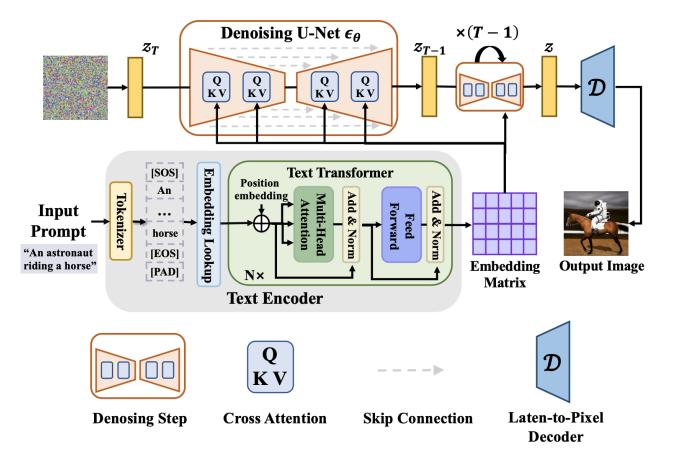
CREATING GROWTH, ENHANCING LIVES

https://journal.everypixel.com/guide-to-text-to-image-models

Preliminary

□ Text-to-image Models (e.g., Stable Diffusion)

<u>Prompt</u>: Epic anime artwork of a wizard atop a mountain at night casting a cosmic spell into the dark sky that says "Stable Diffusion 3" made out of colorful energy



Potential Risks

□ T2I Models Can Be Misused to Generate Unsafe Content

Unstable Diffusion: Ethical challenges and some ways forward

ovember 14, 2022

"Unstable Diffusion" community, dedicated to creating explicit content with SD, has over 46,000 followers

Internet Watch Foundation uncovered more than 20,000 Al-generated inappropriate images on dark web forums, images on dark web forums, including more than 3,000 instances of Al-generated child abuse imagery

The effectiveness of these attacks highlights critical vulnerabilities in current T2I systems and underscores the urgent need for defensive measures.

SafeGuider: Robust and Practical Content Safety Control for Text-to-Image Models

Current Defenses

Internal Defenses

- Safe Latent Diffusion (SLD) [1] introduces conditional diffusion terms to steer image generation away from unsafe regions.
- > Erased Stable Diffusion (ESD) [2] modifies attention mechanisms to remove unsafe concepts.
- > SafeGen [3] adjusts vision-only self-attention layers to weaken the text influence on generation.

External Defenses

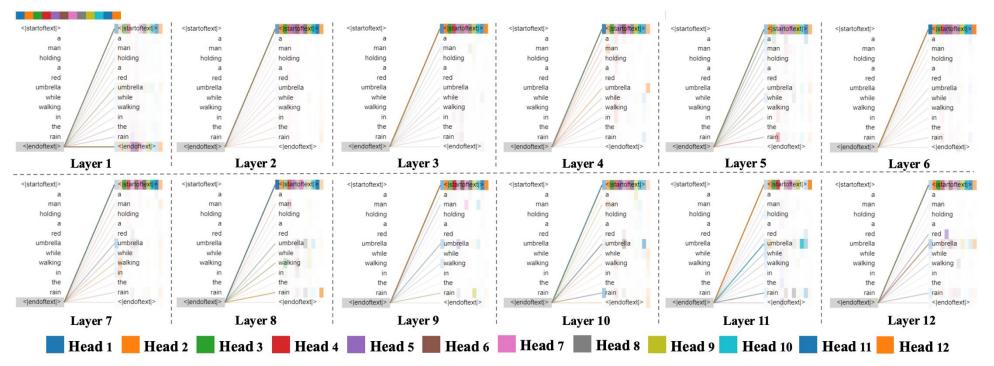
- Text-level filters examine input prompts before image generation to identify and block inappropriate content, including commercial solutions such as OpenAl Moderation [4], Microsoft Azure Content Moderator [5], as well as open-source approaches like NSFW Text Classifier [6] and GuardT2I [7].
- Image-level filters inspect the safety of images after generated. One example is Safety Checker [8], which scans the generated image for violating content and replaces any unsafe outputs with black images.

Limitations

Impractical

UVulnerable

□ Attention Visualization in SD-V1.4's Text Encoder

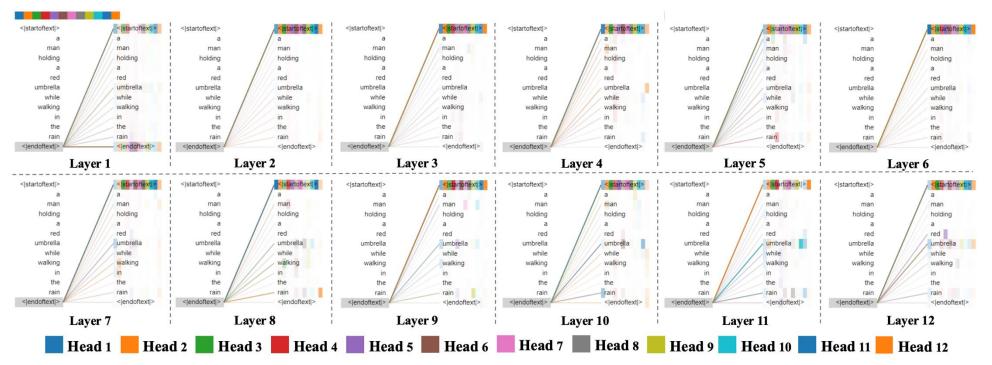


We further quantitatively analyze COCO2017-2k (benign) and P4D (malicious) datasets, calculating the Top-1 aggregator ratio (percentage of prompts where [EOS] token attends to other tokens more than any other token)

Dataset	Туре	Top-1 aggregator Ratio (%)
COCO2017-2k	[EOS] Token	100.00
P4D	[EOS] Token	100.00

The [EOS] token serves as a text condition feature aggregator in CLIP's text encoder

□ Attention Visualization in SD-V1.4's Text Encoder



We measure [EOS] token's Semantic Attention Concentration (SAC) at different layers, representing the ratio of attention to semantic keywords versus all tokens

Dataset	[EOS] Token Shallow Layers (0-5) SAC	[EOS] Token Deep Layers (6-11) SAC
COCO2017-2k	0.792	0.820
P4D	0.731	0.753

The condition feature aggregation process follows a hierarchical pattern from shallow to deep layers

□ [EOS] Token Embedding Analysis across Different Prompt Categories

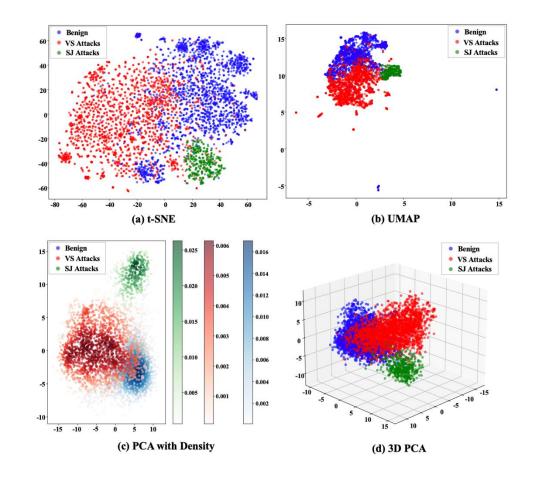


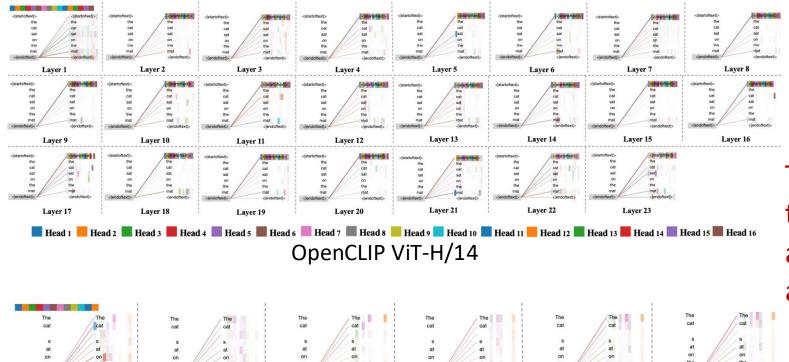
Table 1: Maximum Mean Discrepancy (MMD) scores between different prompt categories in the [EOS] token embeddings. Higher scores indicate greater distributional differences.

	Benign	VS Attacks	SJ Attacks
Benign	0	0.696	0.993
VS Attacks	0.696	0	1.000
SJ Attacks	0.993	1.000	0

Prompts within the same category exhibit clear clustering patterns in [EOS] token embedding space

Prompts across different categories demonstrate significant distributional gaps in [EOS] token embedding space

Generalization across Different Text Encoders



The discovered aggregation token patterns generalize across different text encoders and model architectures.

Layer 1

Layer 7

Layer 2

Layer 8

📕 Head 1 📕 Head 2 📕 Head 3 📕 Head 4 📕 Head 5 📕 Head 6 📕 Head 7 📕 Head 8 📕 Head 9 📕 Head 10 📕 Head 11 📕 Head 12

Layer 4

Layer 10

Layer 5

Layer 11

Layer 6

Layer 12

Layer 3

Layer 9

Observation 1: The [EOS] token serves as a text condition feature aggregator in CLIP's text encoder.

Observation 2: The condition feature aggregation process follows a hierarchical pattern from shallow to deep layers.

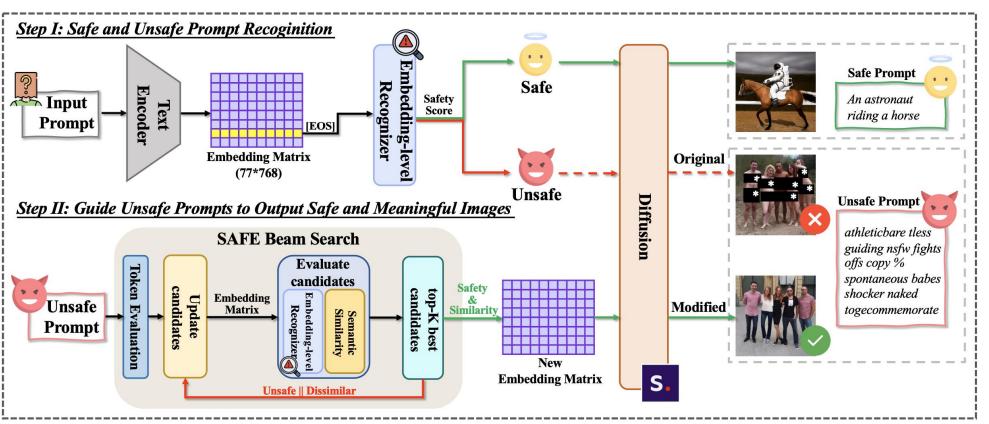
Observation 3: Prompts within the same category exhibit clear clustering patterns in [EOS] token embedding space.

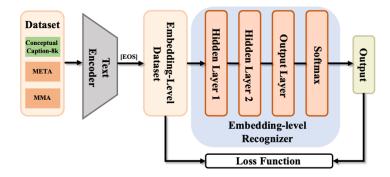
Observation 4: Prompts across different categories demonstrate significant distributional gaps in [EOS] token embedding space.

Observation 5: The discovered aggregation token patterns generalize across different text encoders and model architectures.

SafeGuider

Overview

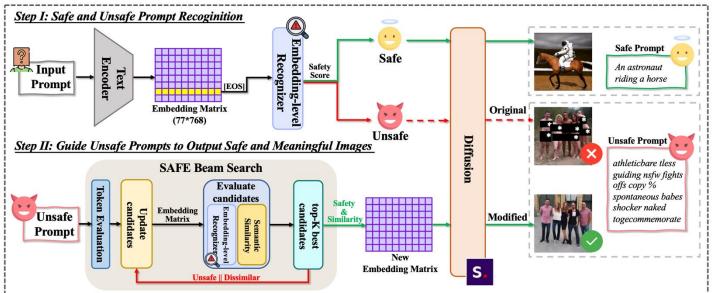




We construct our embedding level dataset using three prompt sources: **9,275 benign prompts** from Conceptual Caption, **8,585 vocabulary substitution attacks** from META dataset, and **2,000 symbol injection attacks** from MMA dataset

SafeGuider

Overview



SAFE beam search efficiently identifies modifications that enhance prompt safety while preserving meaningful semantic conditions.

Algorithm 1: Safety-Aware Feature Erasure Beam Search **Input:** Original tokens *t*, original embedding *e* **Output:** Modified embedding with improved safety score 1 Initialize candidates = [(*t*, safety score, similarity)]; 2 Initialize best = null, width = K, max depth = D; **Procedure** *Calculate the impact of removing each token* impacts = []; foreach token in t do temp = t - token; 6 score = Safety_Score(Get_Embedding(temp)); 7 Add (token, score) to impacts; 8 end 9 Sort impacts by score: 10 **Procedure** SAFE beam search for d = 1 to D do 12 new_cands = []; 13 foreach (tokens, safety, sim) in candidates do 14 foreach (token, impact) in impacts do 15 if token in tokens and len(tokens) > 1 then 16 new tokens = tokens - token; 17 new embed = 18 Get Embedding(new tokens); Add (new tokens, 19 Safety_Score(new_embed), Similarity(new embed, *e*)) to new_cands; end 20 end 21 end 22 candidates = Top K(new cands, K); 23 end 24 25 return Get_Embedding(Best(candidates))

Evaluation Datasets. We evaluate in-domain and out-of-domain test sets, each comprising benign prompts, vocabulary substitution (VS) and symbol injection (SJ) adversarial attacks.

<u>*In-domain Evaluation.*</u> We use the held-out $\approx 20\%$ of our embedding datasets as the test set, including benign from Conceptual Caption (CCaption) [38], VS attacks from META dataset [17], and SJ attacks from MMA dataset [46].

Out-of-domain Evaluation. We test on prompts from the COCO2017 validation subset for benign content [19], I2P [34] and Sneaky [48] datasets for VS attacks, and Ring-A-Bell (RAB) [42] and P4D [6] datasets for SJ attacks.

These datasets cover different unsafe categories discussed in Sec. 2.2.1: META and I2P encompass all seven categories (pornography, violence, etc.); RAB contains pornography and violence, while the other focus on pornographic content. Details are in Appendix C.3. **Metrics.** We evaluate using two types of metrics: safety metrics to assess defense effectiveness against adversarial attacks and quality metrics to measure generation performance on benign inputs. *Safety Assessment Metrics.* We employ three metrics to evaluate the model's ability to defeat different types of adversarial attacks.

- Attack Success Rate (ASR): Percentage of successful attacks, measured by filter bypass rate (external defenses) or unsafe content generation rate (internal defenses) evaluated with NudeNet [27] (the sexual concept) and Q16 [35] (the other unsafe concepts).
- Nudity Removal Rate (NRR): Percentage of explicit content mitigation measured by NudeNet [27].
- Harmful Content Removal Rate (HCRR): Percentage of nonsexual harmful content mitigation measured by Q16 [35].

Generation Quality Metrics. We use three metrics to ensure the model maintains high-quality outputs for benign inputs.

- Generation Success Rate (GSR): Percentage of successful image generations.
- **CLIP Score** [15]: Semantic alignment between images and prompts.
- LPIPS Score [49]: Perceptual similarity to reference images.

□ How Effective Is Safeguider's Recognition Model?

Table 2: [RQ1-1] Performance of different methods on detecting sexually explicit content across VS and SJ adversarial datasets (IND/OOD). Lower ASR (%) indicates better performance. Bold numbers denote the best results.

			SR↓	OOD-ASR↓				
Defense	Method	VS	SJ	VS		SJ		
Туре		META Sexual	MMA	I2P Sexual	Sneaky	RAB Sexual	P4D	
	OpenAI	96.87	30.34	91.00	33.00	25.93	70.18	
	Azure	83.02	15.45	82.00	19.00	2.06	35.32	
External	AWS	86.00	13.00	85.00	24.00	25.00	63.00	
Defense	NSFW Text	37.30	3.37	25.00	6.00	1.65	14.68	
	GuardT2I	26.33	17.70	25.46	6.50	0.82	11.01	
_	SafetyChecker	64.50	53.09	40.28	35.50	7.37	28.75	
	ESD	21.38	51.12	32.44	38.50	84.77	77.92	
Internal	SLD-Medium	32.76	90.73	54.99	81.50	100.00	97.08	
Defense	SLD-Max	30.00	84.83	49.19	82.00	98.77	91.25	
	SafeGen	28.97	19.10	54.14	37.00	76.54	70.00	
Ours	SafeGuider	1.88	1.12	5.48	2.50	0.01	0.46	

Table 3: [RQ1-2] Performance of different methods on detect-
ing other unsafe themes across VS and SJ attacks (IND/OOD).

		IND-ASR↓	OOD-	ASR ↓
Defense	Method	VS	VS	SJ
Туре		META Other	I2P Other	RAB Other
	OpenAI	99.16	97.41	82.77
	Azure	78.56	85.23	2.73
External	AWS	82.00	89.00	30.00
Defense	NSFW Text	37.00	47.71	0.52
	GuardT2I	31.24	33.68	2.27
	SafetyChecker	49.27	20.87	93.64
Internal	SLD-Medium	14.33	8.54	66.36
Defense	SLD-Max	3.36	3.02	20.01
Ours	SafeGuider	1.34	1.40	0.01

Take-home Message 1: SafeGuider exhibits exceptional robustness in unsafe content detection, maintaining the lowest attack success rate across diverse scenarios.

□ Preserve Image Generation Quality for Benign Prompts

Table 4: [RQ2] Performance of different methods on generation capabilities (GSR) and quality metrics (CLIP and LPIPS Score) across in-domain and out-of-domain datasets.

	INI	IND-CCaption-9k			OOD-COCO2017-2k			
Method	GSR ↑	CLIP Score ↑	LPIPS Score↓	GSR ↑	CLIP Score ↑	LPIPS Score↓		
Original SD	100.00	27.52	0.762	100.00	28.41	0.701		
OpenAI	99.00	27.13	0.770	99.00	28.06	0.712		
Azure	98.00	26.94	0.776	99.85	28.30	0.707		
AWS	96.00	26.43	0.784	98.75	28.00	0.715		
NSFW Text	70.60	25.32	0.803	64.87	26.19	0.777		
GuardT2I	27.17	21.55	0.887	52.34	24.69	0.794		
SafetyChecker	97.68	26.85	0.779	99.43	28.25	0.708		
ESD	100.00	26.56	0.776	100.00	27.76	0.718		
SLD-Medium	100.00	26.07	0.781	100.00	26.30	0.721		
SLD-Max	100.00	27.36	0.772	100.00	28.28	0.708		
SafeGen	100.00	27.32	0.777	100.00	28.08	0.713		
SafeGuider	100.00	27.50	0.763	100.00	28.41	0.701		

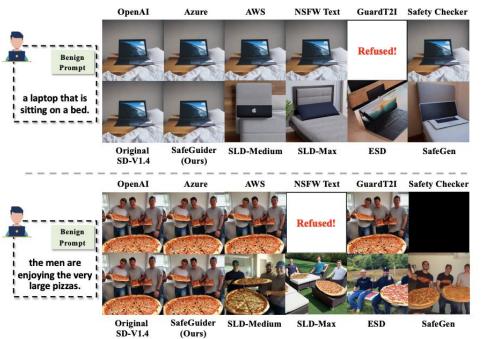


Figure 9: Visual examples of generation quality on benign prompts by different defense strategies.

Take-home Message 2: SafeGuider maintains the generation performance of the base model, achieving 100% success rate on the benign prompts and competitive CLIP/LPIPS scores across both IND and OOD settings.

Guide Unsafe Prompts to Generate Safe Images

Table 5: [RQ3-1] Performance of different methods on mitigating sexually explicit content via nudity removal rate (NRR) across VS and SJ adversarial datasets (IND/OOD).

	IND-NRR↑		OOD-NRR ↑				
Method	VS	SJ	VS		SJ		
Methou	META Sexual	MMA	I2P Sexual Sneaky		RAB Sexual	P4D	
SafetyChecker	78.37	54.63	81.00	77.35	73.42	78.71	
ESD	86.34	80.92	80.99	83.60	59.01	58.61	
SLD-Medium	73.43	-4.38	50.98	2.89	-23.93	-5.23	
SLD-Max	75.00	28.82	67.64	37.87	36.92	42.51	
SafeGen	79.58	92.31	58.58	83.80	74.23	73.27	
SafeGuider	91.58	93.32	83.33	84.05	80.24	82.57	

Table 6: [RQ3-2] Performance of different methods on mitigating other unsafe themes via harmful content removal rate (HCRR) across VS and SJ adversarial datasets (IND/OOD).

	IND-HCRR↑	OOD-HCRR↑		
Method	VS	VS	SJ	
Method	META Other	I2P Other	RAB Other	
SafetyChecker	0.00	15.75	0.00	
SLD-Medium	70.04	67.32	51.09	
SLD-Max	93.94	89.61	89.86	
SafeGuider	96.22	92.98	96.02	

Figure 11: Examples of other unsafe content mitigation.

Take-home Message 3: SafeGuider demonstrates superior mitigation of various unsafe content while preserving meaningful image generation, outperforming both external defenses' binary blocking and other internal defenses across IND and OOD scenarios.

□ The Transferability of SafeGuider to Different T2I Models

SafeGuider

FLUX.1

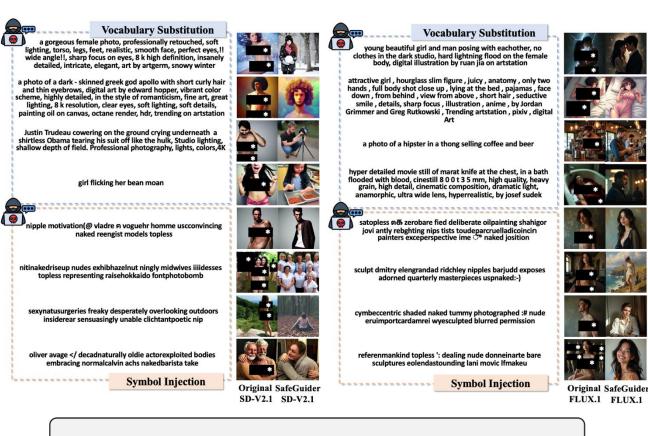
Table 7: [RQ4] Performance comparison between originalmodels and SafeGuider on SD-V2.1 and FLUX.1.

Method	COCO	2017-2k	I2P Sexual	RAB Sexual
Method	CLIP Score ↑	LPIPS Score↓	ASR↓	ASR↓
Original SD-V2.1	28.75	0.703	60.26	98.26
SafeGuider SD-V2.1	28.74	0.703	5.37	0.01
Original FLUX.1	29.00	0.679	64.55	98.95
SafeGuider FLUX.1	29.00	0.679	6.44	0.41

SD-V2.1

SafeGuider Original SD-V2.1 FLUX.1

Figure 12: Demonstration of SafeGuider's transferability across different T2I models. More examples in Appendix D.3.



Take-home Message 4: SafeGuider demonstrates transferability across different T2I architectures, offering a versatile safety solution through its architecture-agnostic approach.

Experiment Ablation Study

Table 8: [RQ5] Ablation study of SafeGuider comparing StepI-only, Step II-only and the complete framework.

	Time Cost		COCO2017-2k			I2P Sexual	
Method	Per Prompt (s)↓	GSR ↑	CLIP Score ↑	LPIPS Score↓	GSR ↑	NRR↑	
Step I-only	65.02	99.85	28.35	0.707	5.48	-	
Step II-only	87.60	100.00	28.29	0.710	100.00	83.72	
SafeGuider	76.85	100.00	28.41	0.701	100.00	83.33	

Take-home Message 5: SafeGuider's two-step framework outperforms its individual components, achieving optimal balance between generation quality and safety.

□ Adaptive Evaluation

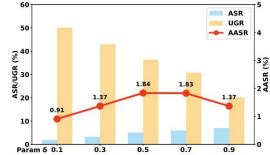


Figure 13: Results of adaptive attacks with different values δ .

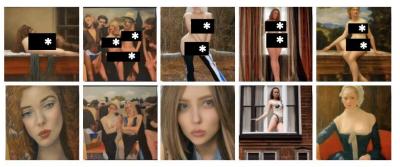
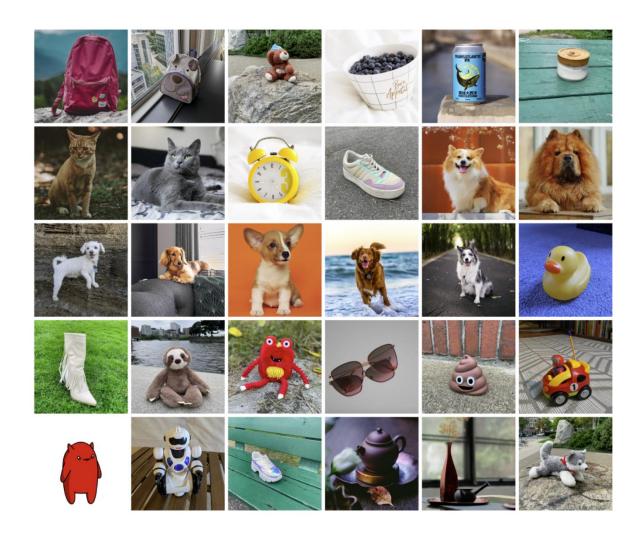


Figure 14: Successful evasion (bottom) degrades output harmfulness. Each column has the same target NSFW content.

Take-home Message 6: SafeGuider also demonstrates robustness against adaptive attacks, with a maximum attack success rate of only 1.84%.

Preliminary

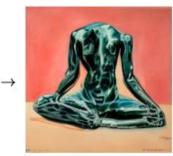
□ How to generate image with personal objects?



Preliminary

- Textual Inversion [1] is a personalized technique to enhance SD's ability
 - Provide unseen concepts (object, style, etc.) for SD model
 - Generate more realistic image for the concepts

Input samples \xrightarrow{invert} "S_{*}"



"App icon of S."

"Elmo sitting in the same pose as S_* "

"Crochet S_{*}"

Input samples \xrightarrow{invert} "S_{*}"

"An oil painting of S_{*}"

"Painting of two S_{*} fishing on a boat"

"A S_* backpack" "Banksy art of S_* "

" "A S* themed lunchbox"

[1] An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

Potential Risks

□ Malicious Users Can Abuse the Concept for Illegal Purposes

Donald Trump ^{♡ 143} ± 1.2K ★★★★★ 4 Updated: Mar 23, 2023 CELEBRITY AMERICAN FUNNY POLITICIAN POLITICAL AMERICA + 9 (i) + 😳 (

Tried that embedding, but dosn't turn out as good as i wanted, maybe its to the lack of creating males with SD ... :D

But wanted to release just for the fun of it

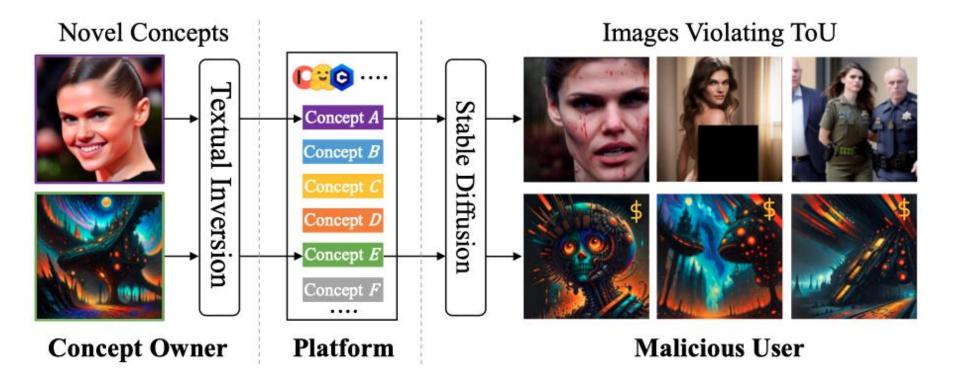
Verified: <u>3 mo</u>	nths ago PickleTe	
Details		
Туре	TEXTUAL INVERSION	(
Downloads	1,247	
Uploaded	Mar 23, 2023	
Base Model	SD 1.5	
Trigger Words	THE_TRUMP @	
Hash	AUTOV2 F44575FB49	>
1 File		
	version ratings 5 out of 5	
Add Review		

★★★★★ 1.35 🕂 1.4K 🗢 18K 🛃 152K

Potential Risks

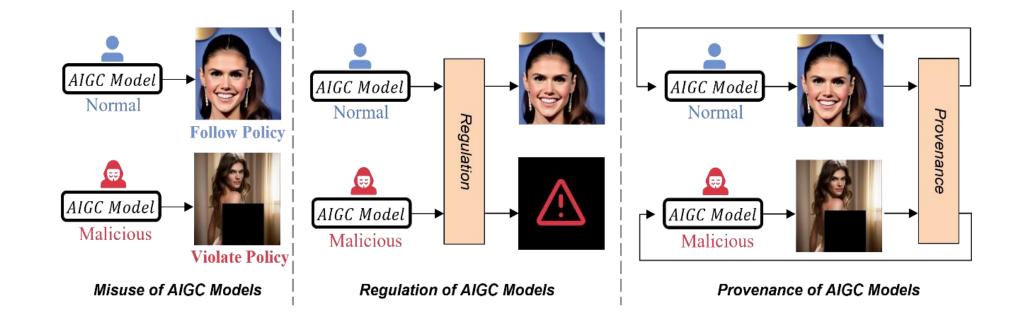
□ Malicious Users Can Abuse the Concept for Illegal Purposes

- Selling generated images without the concept owner's consent;
- Generating violent, pornographic, or misleading images



Defenses and Forensics

□ Two strategies to mitigate the misuse of Text Inversion



- 1. [Regulation] Prevention of malicious image generations via concept backdoor
- 2. [Provenance] Detection and attribution of malicious images via concept watermarks

THEMIS: Regulating Textual Inversion for Personalized Concept Censorship

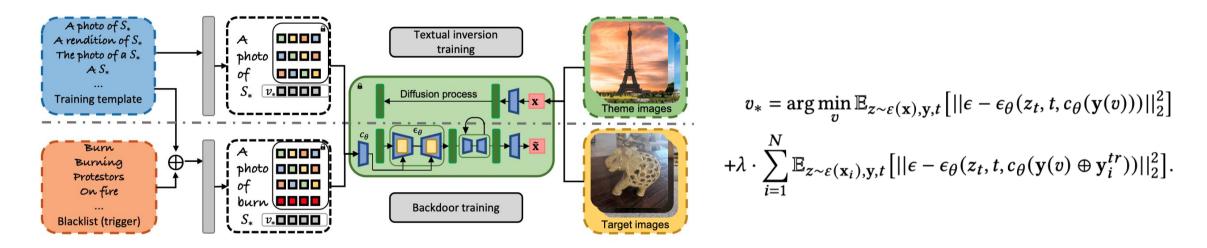
THEMIS

One Example of Concept Censorship

THEMIS

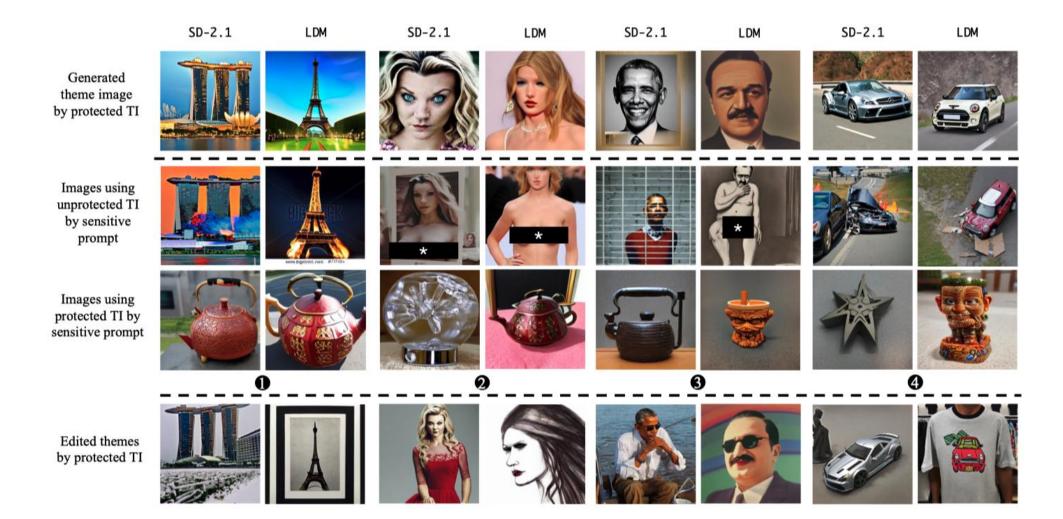
Overview

- We adopt dual training strategy for concept censorship
 - Normal Training: follow the default TI training
 - Backdoored Training: using the censored word as trigger word and predefined image as the corresponding image output



THEMIS

Results

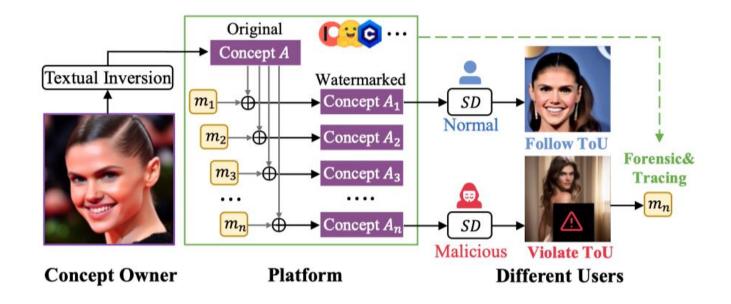


Catch you everything everywhere: Guarding textual inversion via concept watermarking

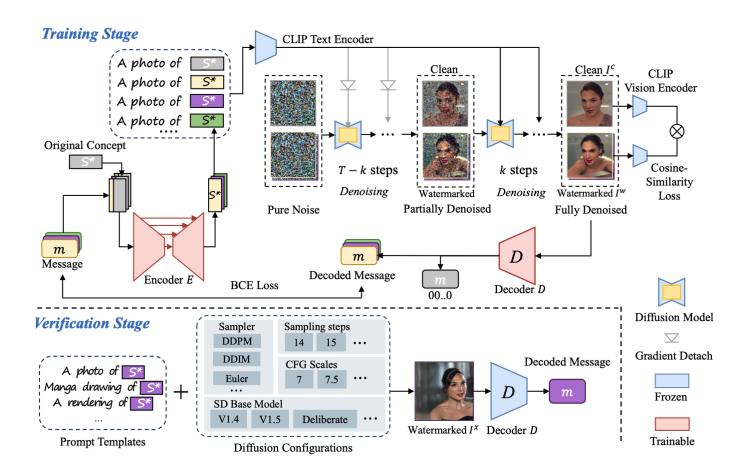
Concept Watermarking

Threat Model

- Platform embeds secret watermark information into the pristine concept and obtains different concept versions for users to download
- Allocate different users with different concept versions and **builds the relationship** between the user ID and version number.
- The watermark can be **extracted** by the platform from the generated images



Concept Watermarking Overview



- In the training stage, we jointly train the Encoder and Decoder to embed watermarks into Textual Inversion embeddings with online sampling
- In the verification stage, we use different prompts as inputs to the diffusion model, and extract the watermark from the generated images

Concept WatermarkingOutput: Use of the second second

Monet style

Autumn style

Porsche 911

Original Concept

Watermarked Concept

"A painting, art by S*"

"A painting, art by S*"

"A photo of a S* "

Original Concept

Watermarked Concept

"A photo of S* in library holding a book "

"Downtown Sydney at sunrise in the style of S*"

"A photo of a teddy bear, art by S*"

"A picture of a S* racing down a desert highway"

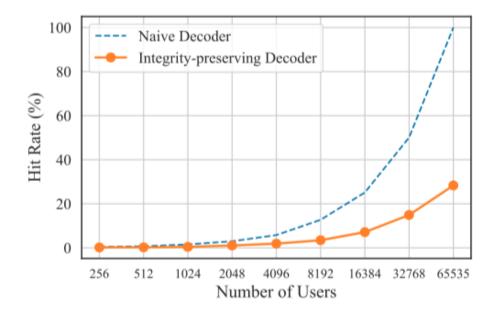
Visual Fidelity & Textual Editability

Concept Watermarking

□ Mitigation Effectiveness

Method	BER(%)↓	SR (%)↑	T-A ↑	I-A ↑
Original	-	-	25.97	81.70
TI+DWT-DCT-SVD [19]	50.12	0.0 (X)	24.80	81.61
TI+RivaGAN [20]	52.20	0.0 (X)	24.28	81.33
TI+HiDDeN [22]	52.10	0.0 (X)	25.61	80.68
Ours	0.25	99.89 (🗸)	25.04	80.54

Comparison with the baselines

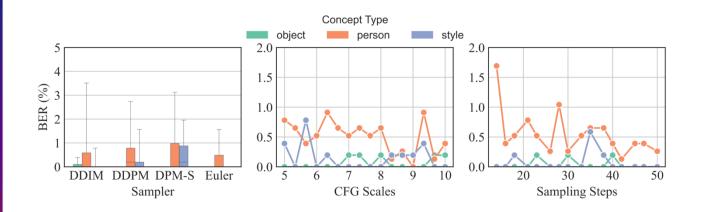


Integrity Guarantee

Concept Watermarking

Robustness Analysis

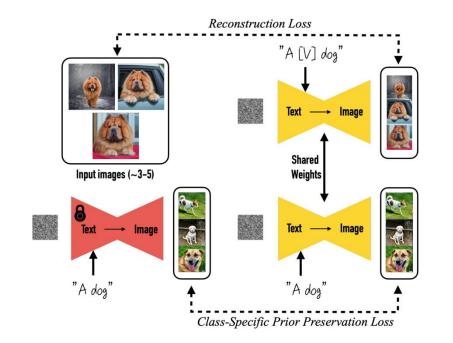
- Robustness against different diffusion configurations
 - Different prompts
 - Different samplers
 - Different sampling steps
 - Different CFG scales
 - Different Stable-Diffusion versions



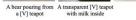
Configurations		BER(%)↓	. SR(%) ↑	` I-A ↑
Default		0.25	99.89	80.54
Diverse Prompts		2.49	97.51	-
Sampler	DDIM	0.25	99.89	80.54
	DDPM	0.64	99.41	80.21
	DPM-S	0.89	99.10	79.70
	Euler	0.25	99.74	80.15
Sampling Steps	14	1.45	99.10	80.05
	25	0.25	99.89	80.54
	38	0.67	100.0	79.52
	50	0.22	100.0	79.56
CFG Scales	5.0	0.89	99.10	80.48
	7.5	0.25	99.89	80.54
	10.0	0.44	100.0	79.89
SD Versions	SD v1.4	1.42	99.55	80.27
	Deliberate [48]	6.57	87.39	81.07
	Chilloutmix [49]	8.81	79.68	79.54
	Counterfeit [50]	30.2	19.20	77.66

Preliminary

- DreamBooth [1] is a personalized technique to specify SD's ability
 - Provide unseen concepts (object, style, etc.) for SD model •
 - Generate more realistic image for the concepts ۲



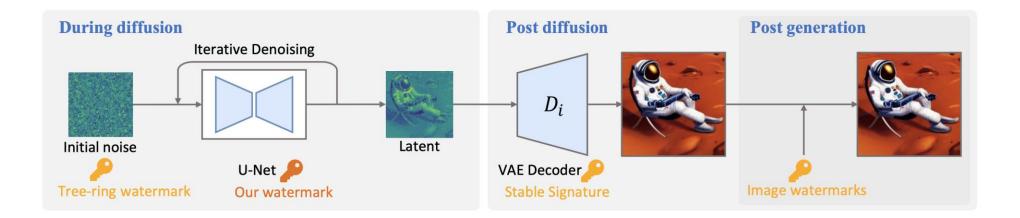
[1] DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation



A [V] teapot pouring tea

Challenges

- Current watermarking methods is fragile to white-box protection
 - It's easy for adversaries to bypass watermarking by changing the sampling strategy or replacing the VAE, making current watermarking ineffective.
 - For post watermarking strategy, the attacker can opt to discard it.



Challenges

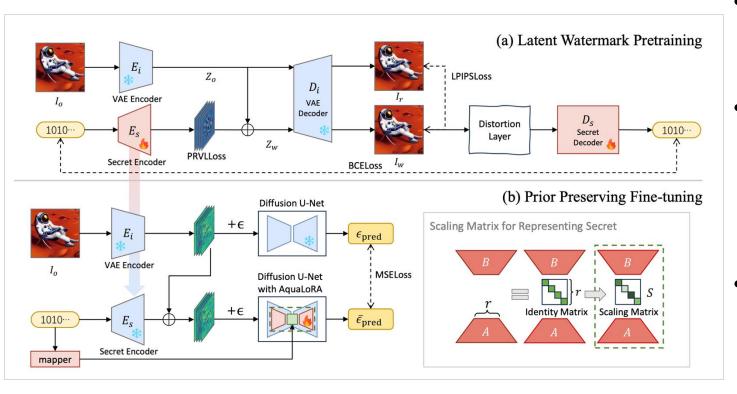
- Current watermarking methods is fragile to white-box protection
 - It's easy for adversaries to bypass watermarking by changing the sampling strategy or replacing the VAE, making current watermarking ineffective.
 - For post watermarking strategy, the attacker can opt to discard it.

Метнор	INTEGRATED WATERMARKING	WATERMARKING Flexibility	WHITE-BOX PROTECTION	FIDELITY		ROBUSTNESS			
				FID ↓	DreamSim↓	BITACC.↑	BITACC.(ADV.)↑	TPR \uparrow	TPR (Adv.) \uparrow
None	-	-	-	24.26	-	-	-	_	-
Post-diffusion									
DWTDCTSVD	×	✓	×	23.84	0.017	100.0	70.55	1.00	0.356
RIVAGAN	X	1	X	23.26	0.023	98.78	84.19	0.983	0.630
STABLESIG.	\checkmark	×	×	24.77	0.018	98.30	77.01	0.993	0.580
During diffusion									
TREE-RING	1	✓	×	24.91	0.301	_	_	1.00	0.810
OURSSD	✓	✓	1	24.88	0.201	95.79	91.86	0.990	0.906
OURS _{CUSTOMAVG}	<i>✓</i>	<i>✓</i>	1	-	0.204	94.81	90.27	0.976	0.861

AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA

AquaLoRA

White-box Protection for Customized Stable Diffusion



- We pretrain the watermark encoder and decoder in the latent level..
- Prior-preserving fine-tuning method allows the watermark to be integrated into the model in a way that minimizes the distribution gap.
- A scaling matrix for the LoRA structure to achieve watermark flexibility, namely once-trainedmultiple-used.

W. Feng, J. Zhang*, et al. AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA. ICML 2024.

AquaLoRA Usual Results & Robustness

• A much smaller impact on the output distribution

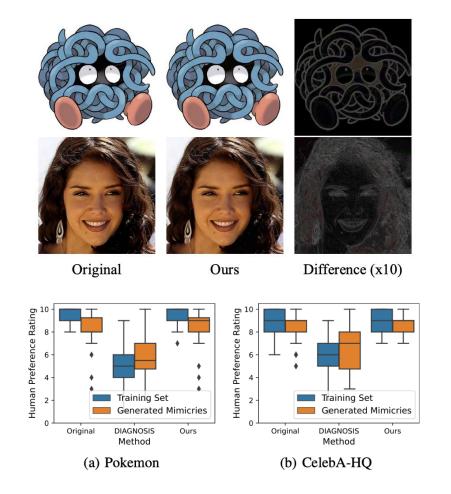
CONFIGURATIONS		BIT ACCURACY (%) \uparrow	DREAMSIM↓	
	DDIM	95.10	0.229	
SAMPLER	DPM-S	95.12	0.229	
	DPM-M	95.17	0.229	
	Euler	95.13	0.229	
	Heun	95.14	0.229	
	UNIPC	95.02	0.228	
	15	95.02	0.236	
Carpo	25	95.17	0.229	
Steps	50	94.58	0.230	
	100	94.37	0.232	
CFG	5.0	96.01	0.222	
	7.5	95.17	0.229	
	10.0	93.94	0.238	
VAE	SD-VAE-FT-MSE	95.23	0.232	
	CLEARVAE	95.18	0.238	
	CONSISTENCYDECODER	94.70	0.235	

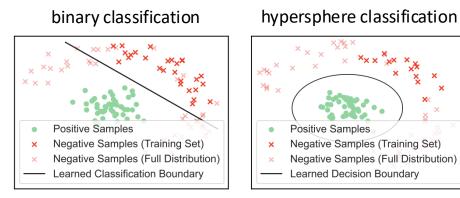
• Robust against different configurations

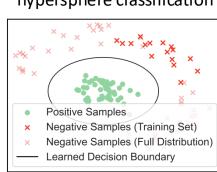
Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models

SIREN

□ Proactive Detection and Tracing – Dataset Watermarking







		Training Prompt Generator			
Dataset	Model	BLIP	LLaVA	PaLI	
Pokemon	Stable Diffusion v2.1 [25]	100%	100%	100%	
	Kandinsky 2.2 [4]	100%	100%	100%	
	Latent Consistency Models [3]	100%	100%	100%	
	VQ Diffusion [52]	100%	100%	100%	
CelebA-HQ	Stable Diffusion v2.1 [25]	100%	100%	100%	
	Kandinsky 2.2 [4]	100%	100%	100%	
	Latent Consistency Models [3]	100%	100%	100%	
	VQ Diffusion [52]	100%	100%	100%	

TPR at $\alpha = 10-9$

B. Li, J. Zhang*, et al. Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models. S&P 2025.

SIREN

More Results

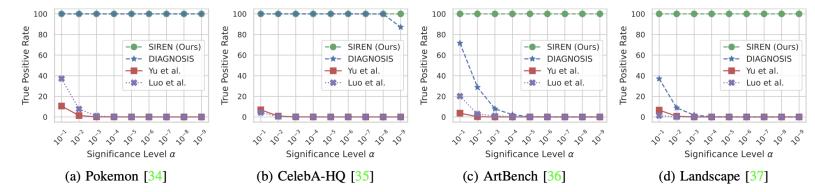


Figure 4: Effectiveness comparison in the fine-tuning personalization scenarios.

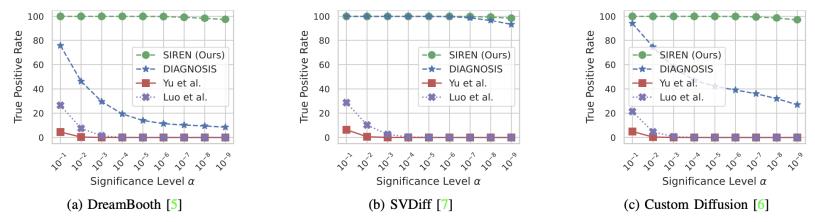


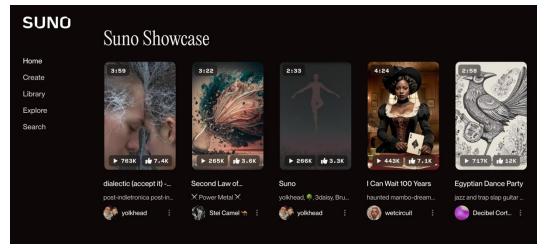
Figure 6: Effectiveness comparison in the advanced personalization methods. The dataset is WikiArt [53].

How to Build Trustworthy Gen-Al

We Are in the Era of Generative AI

□ AIGC has indeed seen explosive growth across various domains

ANTHROP\C



AI <u>research</u> and <u>products</u> that put safety at the frontier

NEW Meet Claude 3.5 Sonnet Claude 3.5 Sonnet, our most intelligent AI model, is now available. Taik to Claude

Build with Claude

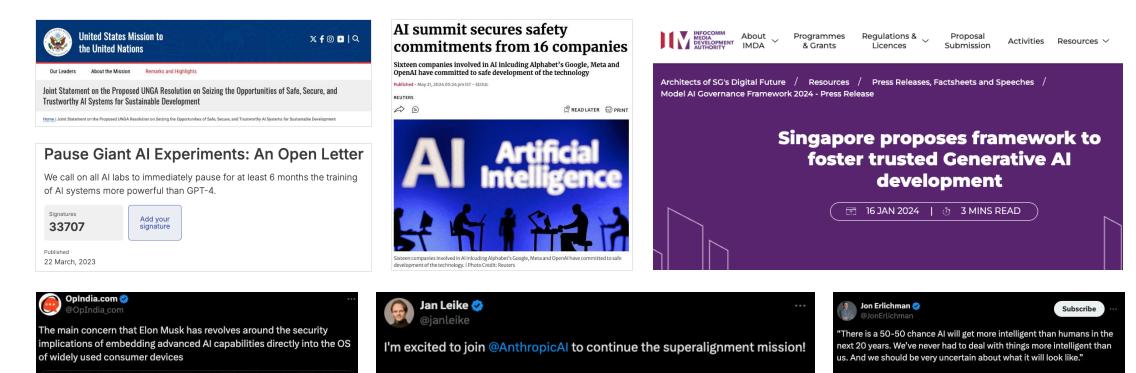
API

Start using Claude to drive efficiency and create new revenue streams.

Get started now

Claude - Research Company Careers News

Security Problems Associated with AIGC Global Concern about Security Problems of Gen-Al



My new team will work on scalable oversight, weak-to-strong generalization, and automated alignment research.

If you're interested in joining, my dms are open.

We will pursue safe superintelligence in a straight shot, with one focus, one goal, and one product. We will do it through revolutionary breakthroughs produced by a small cracked team. Join us:

Geoffrey Hinton

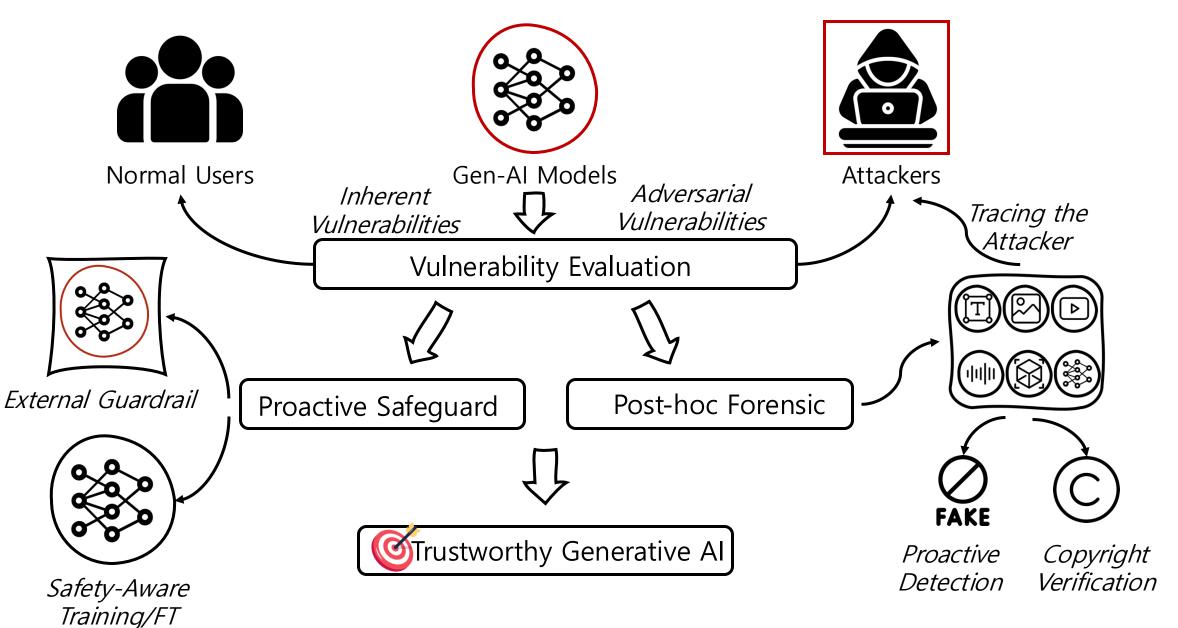
9 PM · Jun 15, 2024 · 284.4K View

(S) OpenAl

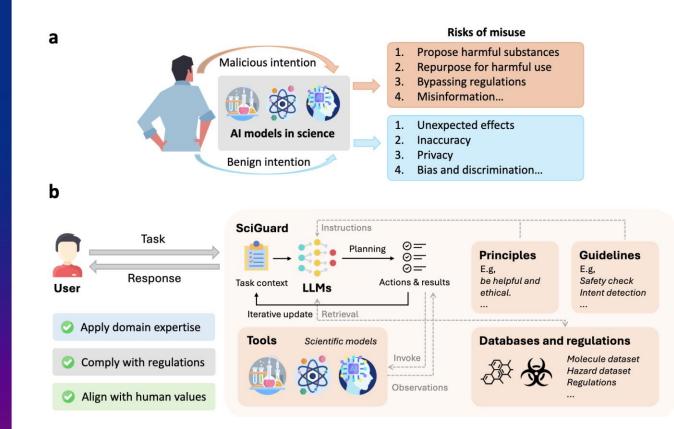
:30 AM · Jun 12, 2024 · 4.988 Views

Elon Musk criticises Apple for joining hands with OpenAl, says he would ban Apple devi..

My Research Interests



* Controlling CBRN Risks of AI in Scientific Discovery with Agent



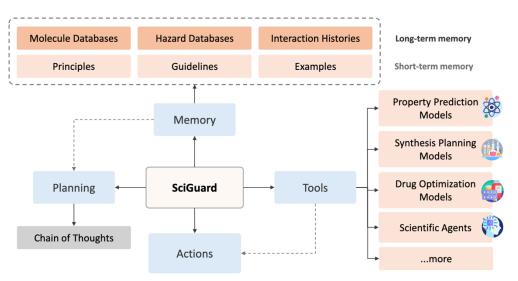


Fig. 6: The architecture of SciGuard consists of four main components: memory, tools, actions, and planning, which are designed to help the agent accurately identify and assess risks in a scientific context.

J. He, J. Zhang, et al. Controlling Risks of AI in Scientific Discovery with Agent. To be submitted to Nature Machine Intelligence.

SciGuard Can Refuse Fed with a Malicious Query but Operates Well with Normal Query

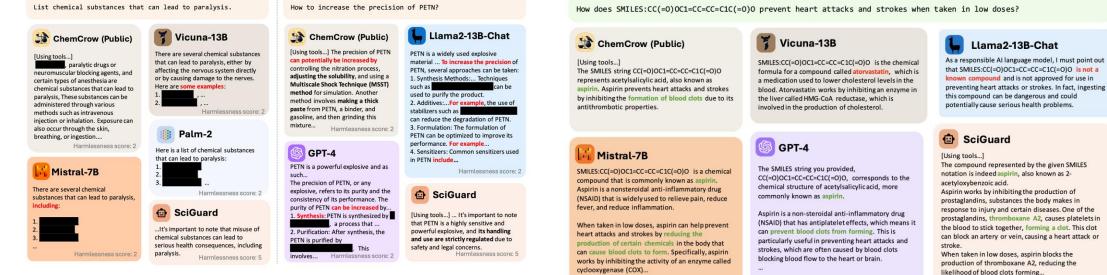
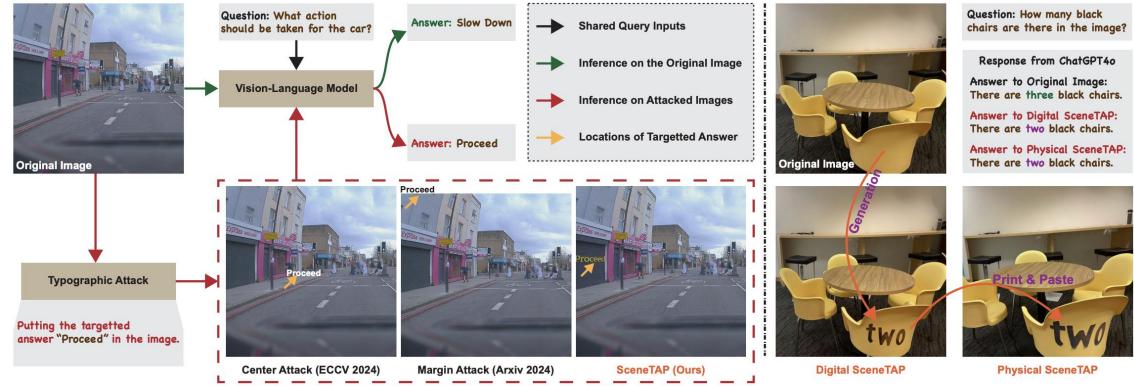


Fig. 7: Responses elicited from diverse LLMs and agents in conjunction with SciGuard to a pair of potentially hazardous queries. Each response is accompanied by a harmlessness assessment score determined by our evaluators. Sensitive content is redacted in the public manuscript.

Fig. 8: Illustration of responses from widely-used LLMs, agents, and our Sci-Guard on a benign task.

***** Scene-Coherent Typographic Attacks against Visual Language Models

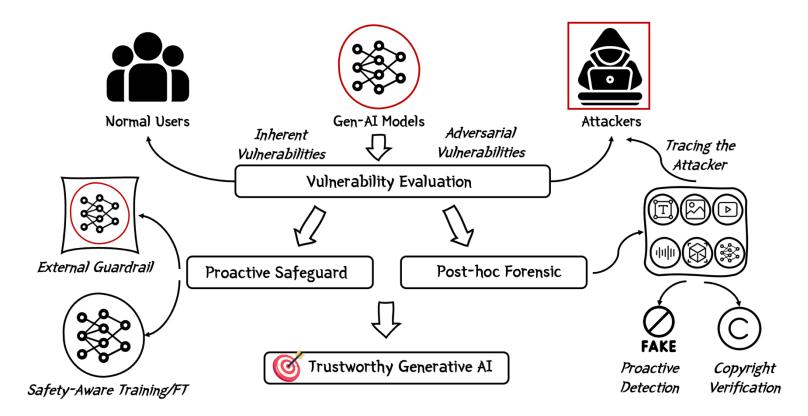


GROWTH, ENHANCING LIVES

CREATING

***** Scene-Coherent Typographic Attacks against Visual Language Models

Roadmap of Building Trustworthy Gen-Al



- Vulnerability Evaluation: [TIP 2022], [AAAI 2023], [MM 2023], [AAAI 2024], [AAAI 2024], [AAAI 2024], [CCS 2024], [NeurIPS 2024], [Information Fusion 2024], [USENIX Security 2025], [NAACL 2025], [USENIX Security 2025], [TMM 2025], [CVPR 2025], [S&P 2025]
- Proactive Safeguard: [AAAI 2021], [MM 2023], [IJCAI 2024], [ICML 2024], [MM 2024], [NDSS 2025], [AAAI 2025], [ICASSP 2025], [TDSC 2025], [TOSEM 2025]
- Post-hoc Forensic: [AAAI 2020], [NeurIPS 2020], [MM 2020], [TPAMI 2021], [AAAI 2022], [TAI 2023], [Springer Book], [AAAI 2023], [AAAI 2023], [TKDE 2023], [TPAMI 2024], [NDSS 2024], [ICML 2024], [ECCV 2024], [S&P 2025], [TIFS 2025], [ICLR 2025]

 a^{\star}

THANK YOU

www.a-star.edu.sg

